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We describe a new, efficient approach to the imposition of exact nonreflecting
boundary conditions for the scalar wave equation. We compare the performance of
our approach with that of existing methods by coupling the boundary conditions to
finite-difference schemes. Numerical experiments demonstrate a significant gain in
accuracy at no additional cost. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The scalar wave equation and Maxwell’s equations govern problems in such diverse
application areas as ultrasonics, seismics, underwater acoustics, antenna design, and mi-
croelectronics [1, 6, 9, 13, 17, 28, 30, 36]. In many cases, the governing equations are
posed as exterior problems, and the infinite physical domain must be reduced to a finite
computational domain through the use of a nonreflecting boundary condition.

At present, much (perhaps most) analysis is carried out in the frequency domain, since the
Sommerfeld radiation condition is well understood and easy to incorporate into fast, integral
equation methods used for large-scale simulation [11, 31, 32, 34, 39]. While frequency-
domain methods will certainly maintain an important role in the modeling of acoustic and
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electromagnetic scattering, time-domain methods are likely to increase in popularity. They
have the ability to model wide-band signals, material inhomogeneities, and nonlinearities.
As a result, they have distinct advantages for the design of wide-band antennas, for the
design of optical coupling and switching devices, for calculations of radar cross section
for aircraft with complex coatings, for defect diagnosis of manufactured materials using
ultrasonic scattering, and for medical and geophysical imaging. One of the central obstacles
to the development of robust time-domain methods, however, has been the lack of accurate
and efficient nonreflecting boundary conditions. Waves should impinge on the (artificial)
outer boundary and disappear without reflection, but they do not. For long time integration,
the reflected energy can exceed that from the true field. This is true of both local differential
boundary conditions [5, 10] and (finite) “absorbing regions” [7, 27].

While there is an extensive literature on the subject (see the review articles [14, 23]),
only a few methods have been proposed which are exact. Ting and Miksis suggested an
interesting approach [41] that relies on Kirchhoff’s formula, but which is computationally
expensive. More recently, Sofronov [37] and, independently, Grote and Keller [18] have
developed and implemented an integrodifferential approach in three dimensions using a
spherical boundary and have demonstrated that high accuracy can be achieved at reason-
able cost. In their schemes, the work is of the same order as that of the finite-difference
or finite-element calculation used in the interior of the domain. In other words, for M
time steps and N points on the spherical boundary, O(M N 3/2) work is required. A some-
what more general, but closely related, integral formulation is introduced in [21, 22, 38].
The fundamental analytical tool in the latter papers is what we refer to as the nonreflect-
ing boundary kernel. In [3], we showed that the nonreflecting boundary kernel can be
compressed and that the amount of work needed to apply the exact condition can be re-
duced to O(M N log2 N ) in three dimensions and O(M N log N ) in two. We describe the
relevant analysis in the following section. Very recently, a general approach to the com-
pression of boundary kernels has been proposed and tested [29], which leads to similar
complexity estimates. Lastly, in [35] a new exact method in three dimensions is proposed
which relies on the strong Huygen’s principle. As it requires the solution of an auxiliary
problem on a larger domain, we expect its cost will be comparable to that of the interior
solve.

Over the last few years, an important independent development has taken place in the
application of integral equations to solving the wave equation. For nonreflecting boundary
conditions, naive use of the relevant potential theory requires O(M N 2) work. Fast “plane–
wave time domain” algorithms [12, 25] are under intensive development and have reduced
the cost to O(M N log2 N ) work. This approach has the significant advantage that it can
be used for arbitrary geometries and achieves the same computational complexity. The
associated constant, however, is rather large.

In this paper, we couple fast nonreflecting boundary conditions, developed in [3] for
spherical and cylindrical boundaries and here for planar boundaries, to finite-difference
solvers for the wave equation. In Section 2, we describe the exact (nonlocal) formulation, and
in Section 3 we develop the fast algorithm for handling the convolution operators that arise.
In Section 4, we present simple temporal and spatial discretization schemes, and in Section 5,
we present a number of numerical experiments. We compare the performance of our exact
scheme, local Engquist–Majda conditions [10], and the recently popular PML method [7],
which uses an absorbing region to dampen undesired reflections. Our conclusions and
directions for future work are discussed in Section 6.
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2. EXACT NONREFLECTING BOUNDARY CONDITIONS

Let us consider the wave equation

utt = c2�u (1)

in the exterior domain R3\�, where � is a finite region supported in the slab −a < x < a.
We assume that the solution u(x, y, z, t) satisfies zero initial conditions

u(x, y, z, t) = 0
t ≤ 0,

ut (x, y, z, t) = 0

and inhomogeneous Dirichlet conditions on the boundary of �:

u(x, y, z, t) = uincoming(x, y, z, t), (x, y, z) ∈ ∂�, t > 0.

This is typical of many acoustic-scattering problems. For the sake of simplicity, we first
seek to impose nonreflecting boundary conditions along the planes x = ±a. We represent
the solution by Fourier transformation with respect to y and z:

u(x, y, z, t) = 1

2�

∫ ∞

−∞

∫ ∞

−∞
û(x,�, �, t)ei(y�+z� ) d� d�. (2)

Suppose now that we take the Laplace transform of û,

ũ(x,�, �, s) =
∫ ∞

0
û(x,�, �, t)e−st dt, (3)

and consider the wave equation in terms of the function ũ. A straightforward calculation
yields

[(s/c)2 + �2 + � 2]ũ = ũxx .

This transformed equation has a right-going wave solution satisfying

ũx +
√

(s/c)2 + �2 + � 2ũ = 0,

and a left-going wave solution satisfying

−ũx +
√

(s/c)2 + �2 + � 2ũ = 0.

These equations form the basis for boundary conditions on the left and right boundaries.
We first rewrite these last two equations in the form

±ũx + s

c
ũ + [

√
(s/c)2 + �2 + � 2 − s/c]ũ = 0 (4)

and note that the inverse Laplace transform of

√
(s/c)2 + �2 + � 2 − s/c
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is

�w(t) = wJ1(wct)

t
, (5)

where w =
√

�2 + � 2. Applying the inverse Laplace transform to (4), we obtain the (exact)
boundary conditions

±ûx (x,�, �, t) + ût (x,�, �, t)

c
+ [�w ∗ û](x,�, �, t) = 0, (6)

where ∗ denotes Laplace convolution with respect to the time variable

( f ∗ g)(t) =
∫ t

0
f (� )g(t − � ) d�.

As above, the positive sign applies to the right boundary, and the negative to the left. We
refer to �w(t) as the plane nonreflecting boundary kernel.

Remark 2.1. The nonreflecting boundary conditions in two space dimensions along
lines x = ±a are essentially the same. We just set � = 0 so that w = � in Eq. (6).

Remark 2.2. The exact conditions (6) are nonlocal in space–time. The nonlocality in
time is clear from the convolution term. The nonlocality in space is obscured by the fact
that we derive (6) in the Fourier-transform domain. In physical space, we could write

±ux (t) + ut (t)

c
+ F−1[�w ∗ Fu](t) = 0, (7)

where F denotes the Fourier transform.

2.1. Cylindrical Coordinates

The wave equation, expressed in standard cylindrical coordinates (� , �, z), is given by

utt = c2

[
u�� + u�

�
+ u��

� 2
+ uzz

]

with solution u that we may represent in the Fourier domain as

u(� , �, z, t) = 1

2�

∫ ∞

−∞

∞∑
n=−∞

û(� , n, �, t)ein�+z� d�.

Letting ũ denote the Laplace transform of û(� , n, �, t) with respect to t , we obtain from the
wave equation the modified Bessel equation

ũ�� + ũ�

�
− [(s2/c2 + � 2) + n2/� 2]ũ = 0,

with outgoing wave solution

ũ(� , n, �, s) = Kn(�
√

(s/c)2 + � 2), (8)
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where Kn denotes the modified Bessel function of order n. Differentiating (8) with respect
to � , we find that

ũ� (� , n, �, s) =
√

(s/c)2 + � 2 K ′
n(�
√

(s/c)2 + � 2),

which we write in the more suggestive form

ũ� (� , n, �, s) =
√

(s/c)2 + � 2

[
K ′

n(�
√

(s/c)2 + � 2)

Kn(�
√

(s/c)2 + � 2)

]
ũ(� , n, �, s). (9)

Formally speaking, we could apply the inverse Laplace transform to (9). However, this leads
to difficulties, since the transform of the kernel

√
(s/c)2 + � 2

[
K ′

n(�
√

(s/c)2 + � 2)

Kn(�
√

(s/c)2 + � 2)

]

grows with s. To overcome this, we subtract the first two terms of the kernel’s asymptotic
expansion and write

ũ� (� , n, �, s) =
(

s

c
+ 1

2�
+
√

(s/c)2 + � 2
K ′

n(�
√

(s/c)2 + � 2)

Kn(�
√

(s/c)2 + � 2)

)
ũ(� , n, �, s)

−
(

s

c
+ 1

2�

)
ũ(� , n, �, s).

Taking the inverse Laplace transform now, the outgoing wave boundary condition at
� = b is

û� + ût

c
+ û

2b
= �n,� (t) ∗ û, (10)

where

�n,� (t) = L−1

(
s

c
+ 1

2b
+
√

(s/c)2 + � 2
K ′

n(b
√

(s/c)2 + � 2)

Kn(b
√

(s/c)2 + � 2)

)
(11)

is the cylinder nonreflecting boundary kernel.

Remark 2.3. The nonreflecting boundary conditions in two space dimensions on a cir-
cular boundary r = b are essentially the same. We just set � = 0 in Eq. (10).

2.2. Spherical Coordinates

Finally, let us consider spherical coordinates (r, �,	). Using the spherical harmonic
transformation

u(r, �,	, t) =
∞∑

n=0

n∑
m=−n

û(n, m, r, t)Ynm(�,	),
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the wave equation (after Laplace transformation) is converted to the modified Bessel equa-
tion

ũrr + 2ũr

r
− [s2/c2 + n(n + 1)/r2]ũ = 0.

Considerations similar to those outlined above yield boundary conditions at r = b of the
form

ûr + ût

c
+ û

b
= 
n(t) ∗ û, (12)

where


n(t) = L−1

(
s

c
+ 1

2b
+ s

c

K ′
n+1/2(b s/c)

Kn+1/2(b s/c)

)
. (13)

We refer to 
n(t) as the sphere nonreflecting boundary kernel.

3. COMPRESSION OF CONVOLUTION KERNELS

In the preceding section, we derived exact boundary conditions for planar, cylindrical,
and spherical boundaries. For the planar case (6), the nonreflecting boundary kernel �w(t)
is given in the time domain by (5). For cylindrical and spherical boundaries, however, only
the Laplace transforms of the kernels �n,� (t) and 
n(t) are given. Two tasks remain.

1. We need to invert the Laplace transform, for �n,� in (11) and 
n in (13).
2. We need a convenient representation of the nonreflecting kernels in the time domain.

Because of the latter need, our approach will, in fact, be similar in all three settings, despite
the fact that the plane kernel is known analytically. First we recall two elementary facts.

LEMMA 3.1. Suppose that K̃ (s) is given as a sum of poles in the left half plane:

K̃ (s) =
M∑

m=1

pm

s + sm
,

with Re(sm) > 0. Then its inverse Laplace transform is given by

K (t) =
M∑

m=1

pme−sm t .

LEMMA 3.2. Let

f (t) =
∫ t

0
K (t − � )g(� ) d�

and suppose that

K (t) =
M∑

m=1

pme−sm t .
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Then

f (t) =
M∑

m=1

pm fm(t),

where

fm(t) =
∫ t

0
e−sm (t−� )g(� ) d�.

Moreover, fm(t) satisfies the recurrence relation

fm(t + �t) = e−sm�t fm(t) +
∫ t+�t

t
e−sm (t+�t−� )g(� ) d�.

Remark 3.1. Lemma 3.2 eliminates the burden of history dependence. It costs only
O(M) work per time step to evaluate f (t) recursively. Thus, even in the case of plane
boundaries, it is advantageous to find efficient, accurate approximations of the nonreflecting
boundary kernels in terms of a small number of poles. In the cases for the cylinder and sphere,
it is essential.

LEMMA 3.3. Let f = K ∗ g, suppose that � approximates K, and define 	 = � ∗ g.
Then by Parseval’s equality,

‖	 − f ‖2 = ‖� ∗ g − K ∗ g‖2 = ‖�̃g̃ − K̃ g̃‖2

≤
∥∥∥∥ �̃ − K̃

K̃

∥∥∥∥
∞

‖K̃ g̃‖2 =
∥∥∥∥ �̃ − K̃

K̃

∥∥∥∥
∞

‖K ∗ g‖2, (14)

where the norms are taken on the real axis in the time domain and on the imaginary axis
in the Laplace domain, and we assume that the Laplace transforms are all regular for
Re(s) > 0.

Alternatively, suppose we can bound the error with which �̃ approximates K̃ only on the
line Re(s) =� > 0 (rather than Re(s) = 0). Then

‖	 − f ‖L2(0,T ) ≤ e�T

∥∥∥∥ �̃ − K̃

K̃

∥∥∥∥
L∞(�+iR)

‖K ∗ g‖L2(0,T ). (15)

Remark 3.2. Lemma 3.3 shifts the task of approximating K in the time domain to
approximating its transform K̃ in the Laplace domain. When K̃ cannot be conveniently
approximated on the imaginary axis, only very near it, bound (15) will prove effective. We
will exploit (14) for the sphere kernels 
n, n ∈ Z , and the cylinder kernels �n,0, n > 0, and
(15) for �0,0 and the plane kernel �w.

3.1. The Plane Kernel

In the Laplace domain, the plane kernel takes the form

√
(s/c)2 + w2 − s/c = w(

√
(s/wc)2 + 1 − s/wc). (16)
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FIG. 1. The contour on which we apply Cauchy’s integral formula to represent the function (z2 + 1)1/2. The
branch cut is depicted by the dashed line, and C1 is a semicircle running from i to −i .

By the residue theorem, for |z| < R, Re(z) > 0,

(z2 + 1)1/2 = 1

2�i

∫
C1+L1+C2+L2

(w2 + 1)1/2

w − z
dw,

where C1 denotes the semicircle from i to −i in the left half-plane, L1 denotes the ray
from −i to −i R, C2 denotes the semicircle from −i R to i R in the right half-plane, and L2

denotes the ray from i R to i . We assume the branch cut is taken on some contour which
lies to the left of C1 (Fig. 1). A straightforward calculation shows that, in the limit R → ∞,

(z2 + 1)1/2 = z + 1

�i

∫
C1

(� 2 + 1)1/2

� − z
d�. (17)

Combining (16) and (17), we have

√
(s/c)2 + w2 − s/c = w

�i

∫
C1

(� 2 + 1)1/2

� − s/wc
d�. (18)

With (18), we are close to a satisfactory representation for the plane kernel. We need
simply to replace the continuum of poles on the contour C1 with a finite number.

LEMMA 3.4. Let �(� ), �1 ≤ � ≤ �2, denote a curve segment in the complex plane which
lies entirely in a disk D of radius r centered at A, let �(� ) denote a charge density supported
on �, and let 	(z) denote the Cauchy integral

	(z) =
∫

�

�(� )

�(� ) − z
d�(� ).

If z is a point such that |z − A| > 2r, then only O(log2(1/�)) poles are needed to approximate
	(z) with an error � > 0.

Proof. Consider first the multipole expansion of 	 about A,

	(z) =
∞∑

k=1

ak

(z − A)k
,



278 ALPERT, GREENGARD, AND HAGSTROM

where

ak =
∫

�

�(� )� k(� ) d�(� ).

A simple geometric-series bound shows that∣∣∣∣∣	(z) −
p∑

k=1

ak

(z − A)k

∣∣∣∣∣ = O(2−p).

Thus, setting p = log2(1/�) guarantees the desired precision. We now need to replace
the truncated p-term multipole expansion for 	 with p equispaced point sources on the
boundary of D.

	(z) ≈
p∑

k=1

bk

z − Ak
,

where Ak = A + re2�ik/p. By matching the first p moments of this distribution to the
multipole coefficients, the same precision is obtained in the far field. For this, one simply
requires that

p∑
k=1

bk�
j−1

k = a j , j = 1, . . . , p.

�

Let us return now to the contour C1 and the representation (18). We choose a line
Re(z) = � = 1/T on which to compute the inverse Laplace transform, restricting its valid-
ity in the time domain to t < T . Consider a covering of C1 with disks that are separated
from the line Re(z) = 1/T by their radius, as in Fig. 2. It is easy to see that O(log(T )) disks
are needed. From Lemma 3.4, it follows that O(log(1/�) · log(T )) poles are sufficient to
approximate the nonreflecting boundary kernel on the line Re(z) = 1/T .

Remark 3.3. A more careful analysis shows that O(log(1/�) + log(T )) poles actually
suffice.

FIG. 2. A covering of the semicircle representing a continuous distribution of poles for the plane kernel. We
carry out the Laplace transform on the dashed line Re(z) = 1/T .
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While the estimates above give a good asymptotic performance, in practice we reduce
the constants with a somewhat different mechanism for obtaining pole approximations.
Lemma 3.3 shows that it suffices to approximate the Laplace transforms of the kernels
on the line Re(s) = 0 where possible, and the line Re(s) = � = 1/T otherwise, with the
relative error measured in the maximum norm. Nevertheless, we look for optimal rational
approximations in weighted L2 norms, using least-squares methods, where the weights are
chosen to give small relative errors in the maximum norm.

Remark 3.4. Equation (16) shows that the plane kernel �̃w is a simple rescaling of �̃ 1.
Nevertheless, our ability to approximate �̃ 1 only on Re(s) = � > 0 limits the validity of a
single approximation of �̃ 1, rescaled for �̃w, to a maximum value of w, and a maximum
number of discrete modes.

3.2. Rational Approximation Technique

The (nonlinear) least-squares problem we choose to solve takes the form

min
P,Q

∫ ∞

−∞

∣∣∣∣ P(s)

Q(s)
− ũ
(s)

∣∣∣∣
2

ds (19)

for P , Q polynomials with deg(P) + 1 = deg(Q) = d. Problem (19) is not only nonlinear,
it is also very poorly conditioned when P, Q are represented in terms of their monomial
coefficients. We apply two tactics for coping with these difficulties: linearization and or-
thogonalization.

We linearize the problem by starting with a good estimate of Q, and updating P, Q
iteratively. In particular, we solve the linear least-squares problem

min
P (i+1),Q(i+1)

∫ ∞

−∞

∣∣∣∣ P (i+1)(s)

Q(i)(s)
− Q(i+1)(s)

Q(i)(s)
ũ
(s)

∣∣∣∣
2

ds, (20)

where the integral is replaced by a quadrature. The initial values P (0), Q(0) are obtained by
exploiting the asymptotic expansion of the kernel at both zero and infinity.

The initialization for the plane boundary proceeds according to a simple recurrence. (The
other boundaries, treated similarly, have recurrences originating with the Bessel functions,
as presented in our earlier work [3].) Given the degree d, the kernel � = √

s2 + 1 − s is
approximated by P (0)/Q(0) computed by the following procedure:

(p, q) ← (0, 1)
do

(p, q) ← (p(1 − s) + q, p + (1 + s)q) (21)
if deg(q) = d then exit
(p, q) ← (q/2, p/2 + s q) (22)
if deg(q) = d then exit

end(
P (0), Q(0)

)← (p, q)

At each execution of (21), the approximation p/q agrees with � to two more derivatives
at s = 0; at each execution of (22), p/q agrees with � to two orders higher at s → ∞. The
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execution of either (21) or (22) preserves the approximation order at the other point and
increases the degree of p and q by 1.

The procedure to represent P (i), Q(i) and solve (20) is a fairly straightforward appli-
cation of Gram–Schmidt orthogonalization. The cost of each linear least-squares solve is
proportional to d3; we have observed convergence for the nonlinear problem in two to four
iterations. More details of the orthogonalization are presented in [3]. Since we are inter-
ested in using the results obtained there, we simply state as a theorem the outcome of the
optimization process.

THEOREM 3.1 (Alpert et al. [3]). The nonreflecting boundary kernels �n,0(t), n > 0,

and 
n(t) can be represented for t ≥ 0 with accuracy � using O(log n log 1
�

+ log2 1
�
)

poles in the Laplace domain. Kernel �0,0(t) can be represented for 0 ≤ t ≤ T with
O(log T log 1

�
+ log 1

�
log log 1

�
+ log T log log 1

�
) poles. Thus, in the time domain, they

can be represented with the same number of decaying exponentials. The efficiency of the
representation is indicated in Table I. (For 15-digit accuracy, about twice as many terms
are required.)

Remark 3.5. The use of poles (rational functions) in the Laplace domain and decaying
exponentials in the time domain is a central topic in linear systems analysis and model

TABLE I

Number N of Poles Needed to Represent the Laplace

Transform of the Nonreflecting Boundary Kernels �n,0,�n,

and �w for � = 10−8

�n,0 
n

n N n N

0 44
1 15
2 9

3–8 7 0–7 n
9–10 8 8–10 8

11–14 9 11–14 9
15–20 10 15–19 10
21–28 11 20–28 11
29–41 12 29–40 12
42–58 13 41–57 13
59–84 14 58–83 14
85–123 15 84–123 15

124–183 16 124–183 16
184–275 17 184–275 17
276–418 18 276–418 18
419–638 19 419–637 19
639–971 20 638–971 20
972–1024 21 972–1024 21

Note. �n,0 is used for a circular boundary in two dimensions, 
n is
used for a spherical boundary in three dimensions, and �w is used for
a planar boundary. (The data for �n,0 and 
n are taken from [3]. For
the plane kernel �w , a single representation of 64 poles suffices for all
modes n = 0, . . . , 1024 for T < 10,000.)
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order reduction in electrical engineering and control theory [40, 42]. The compression
techniques developed there are, of course, much more general than the one developed here.
Unfortunately, the existing tools encounter serious instabilities in the present setting, while
the approach outlined above is robust.

Remark 3.6. Although the cost of obtaining a kernel representation of size d is pro-
portional to d3, d grows only logarithmically in the wave problem size. In addition, the
kernel representations are problem independent and can be computed once for all problems
less than a particular size. We have computed and stored the representations needed for
problems up to a rather large size.

4. DISCRETIZATION

Let us consider the wave equation (1) with c = 1 in the half-space x > 0 on a uniform
Cartesian mesh with a nonreflecting boundary at x = 0. At all interior grid points, we obtain
a second-order-accurate method using the usual central difference approximation:

u(x, y, t + �h) − 2u(x, y, t) + u(x, y, t − �h)

= �2(u(x + h, y, t) + u(x, y + h, t) − 4u(x, y, t) + u(x − h, y, t) + u(x, y − h, t)).

Note that we have fixed �x = �y = h,�t = �h. For higher order accuracy, we follow the
Lax–Wendroff approach. For example, beginning with the Taylor expansion

u(t + �t) − 2u(t) + u(t − �t)

�t2
= utt (t) + �t2

12
utttt (t) + O(�t4),

we use the wave equation utt = �u to obtain

u(t + �t) − 2u(t) + u(t − �t)

�t2
= �u(t) + �t2

12
�2u(t) + O(�t4).

This allows us to exchange high-order temporal differentiation and the accompanying stor-
age requirements for spatial differences. By approximating the Laplacian to fourth order
(using a standard nine-point stencil) and the biharmonic operator to second order, we main-
tain the fourth-order accuracy. For grid points near the boundary, we use standard one-sided
finite differences to obtain fourth-order accuracy. Beyond fourth order, instabilities arise
from the use of one-sided differences on a uniform mesh. This is remedied by modifying
the mesh near boundaries. In particular, the eighth-order discretization used to obtain some
of the results below employs Alpert’s eighth-order Gauss-trapezoidal quadrature mesh [2].
Here the points h and 2h on the uniform mesh are replaced by three points, approximately
0.21h, 0.98h, and 1.99h. See [24] for more details.

Our implementations of the nonreflecting boundary condition (6) are a bit more involved.
At x = 0, we need to enforce the equation

ûx (x,�, �, t) + ût (x,�, �, t) + [�w ∗ û](x,�, �, t) = 0. (23)

For some of our experiments, we apply this condition at staggered points in time. That is,
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for second-order accuracy, we use the approximations

ûx (0,�, �, t + h/2) = 1

2

[
�(2)

x û(0,�, �, t + h) + �(2)
x û(0,�, �, t)

]+ O(h2)

ût (0,�, �, t + h/2) = û(0,�, �, t + h) − û(0,�, �, t)

h
+ O(h2),

where �(2)
x û(0,�, �, t) denotes the second-order one-sided three-point approximation to the

x-derivative. We then replace (23) with a discrete version,

1

2

[
�(2)

x û(0,�, �, t + h) +�(2)
x û(0,�, �, t)

]+ û(0,�, �, t + h) − û(0,�, �, t)

h
+ [�w ∗ û](0,�, �, t + h/2) = 0, (24)

where the convolution integral [�w ∗ û](0,�, �, t + h/2) is computed using the midpoint
rule. In order to be efficient, of course, we use the recurrence relation of Lemma 3.2 to
eliminate the burden of history dependence.

For fourth-order accuracy, we use a Taylor expansion in time and the Lax–Wendroff
technique to obtain

ûx (0,�, �, t + h/2) = 1

2

[
�(4)

x û(0,�, �, t + h) + �(4)
x û(0,�, �, t)

]
+ h2

16
[�ûx (0,�, �, t + h) + �ûx (0,�, �, t)] + O(h4),

ût (0,�, �, t + h/2) = û(0,�, �, t + h) − û(0,�, �, t)

h

+ h2

24

[
�hû(0,�, �, t + h) − �hû(0,�, �, t)

h

]
+ O(h4),

where �(4)
x û(0,�, �, t) denotes the fourth-order, one-sided, five-point approximation to the

x-derivative and �hû(0,�, �, t) is a second-order-accurate approximation of the Laplacian.
We are still working in the Fourier domain, so that

�hû(0,�, �, t) = �(2)
xx û(0,�, �, t) − (�2 + � 2)û(0,�, �, t),

where �(2)
xx û(0,�, �, t) is a one-sided, second-order-accurate approximation of the second

derivative. A second-order-accurate stencil for �ûx (0,�, �, t) is obtained using a one-sided,
five-point approximation. Equation (23) is then replaced with

1

2

[
�(4)

x û(0,�, �, t + h) + �(4)
x û(0,�, �, t)

]+ h2

16
[�ûx (0,�, �, t + h) + �ûx (0,�, �, t)]

+ û(0,�, �, t + h) − û(0,�, �, t)

h
+ h2

24

�hû(0,�, �, t + h) − �hû(0,�, �, t)

h
+ [�w ∗ û](0,�, �, t + h/2) = 0. (25)

Our eighth-order implementation uses similar ideas. Even-order time derivatives of u are
obtained from the interior, and odd-order derivatives from the boundary condition. The latter
is applied not only to u, but also to the even-order time derivatives of u. The convolution is
computed in differential form using implicit Adams methods.
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Remark 4.1. The second- and fourth-order marching schemes, (24) and (25), as well as
the Adams methods used at eighth order, are implicit. Since the modes (indexed by � and
� ) are uncoupled, however, their solution is trivial, involving only a scalar division.

Remark 4.2. For a spherical boundary, it is necessary to efficiently compute the spherical
harmonic transforms and their inverses. Despite recent advances on this problem [26], we
use the standard method [19]. For the waveguide problem below, we discretize the Fourier
integrals using the Gauss-trapezoidal rule [2]. As this reduces to the standard discrete Fourier
transform plus a couple of terms, the FFT can still be used.

5. NUMERICAL RESULTS

We introduce several model problems to compare our implementation of the nonreflecting
boundary conditions to other methods and to exact solutions. To distinguish spatiotempo-
ral discretization errors from those due to the implementation of nonreflecting boundary
conditions, we perform some duplicate computations employing exact Dirichlet boundary
conditions and thereby estimate the error due to discretization alone.

5.1. Rectangle

We consider first a rectangular domain (x, y) ∈ (−1, 1) × (0, 1), with periodic boundary
conditions at y = 0, 1. The field arises from point sources at

{(xk, yk) = (0, k + 1/2) | k ∈ Z}, (26)

with the excitation of every source given by f (t) = e−�(t−� )2
, with � = 150 and � = −0.5.

The exact solution is

u(x, y, t) =
∞∑

k=−∞

∫ t−rk

−∞

f (s)√
(t − s)2 − r2

k

ds, (27)

where r2
k = x2 + (y − yk)2. Note that f (t) is negligible for t ≥ 0, and u(±1, y, 0) and

ut (±1, y, 0) are also negligible (by the start time, the sources are off and the waves have not
yet reached the boundary). The solution is evaluated via a combination of Gauss–Legendre
and endpoint-corrected trapezoidal rules to an accuracy of at least 10−9. Shown in Fig. 3, it
has a steady stream of waves arriving from ever more distant sources, and the amplitudes of
these waves decay rather slowly in time. Containing both very low frequencies and glancing
angles, the waves represent a significant challenge for nonreflecting boundary conditions.

For the numerical study, we begin with the solution at times t = 0 and t = �t , and evolve
for t ∈ [0, 50] using the fourth-order-accurate discretizations described in Section 4. We
choose node spacing h in x and y, for h = 1/25, 1/50, and 1/100, with time steps defined
by � = 1/2, 5/8.

For both second- and fourth-order implementations, the spatially global relative l2-error
conforms to O(h p), where p is the order. In Table II we show the error of the computed
solution for the fourth-order method, comparing exact Dirichlet boundary conditions and
the exact nonreflecting boundary conditions. We represent the plane nonreflecting boundary
kernel with a 21-pole approximation, for which � = 1/T = 10−4 and � = 9.8 × 10−5 (see
Section 3.1).
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FIG. 3. Waves due to a periodically repeated source impinging on the x = 1 boundary of the rectangular
domain (exact solution).

For purposes of comparison, we solved the same problem using a strongly well-posed
perfectly matched layer (PML). Introduced for Maxwell’s equations by Berenger [7] in 1994,
the PML seems to have become the method of choice in computational electromagnetics. It
improves on earlier absorbing layers (for example [27]) by having a reflectionless interface
with the physical domain. The original formulation applies only to the Maxwell system and
is only weakly well posed. Later formulations by Collino and Monk [8] and Petropoulos
[33] are mathematically cleaner. We use them as the basis of our layer construction for the
wave equation.

As discussed in [23], an integral formulation of reflectionless absorbing layers for the
wave equation is given by

utt = (1 − �(x)I∗)((1 − �(x)I∗)ux )x + uyy, (28)

I ∗ 	 =
∫ t

0
e−�(x)(t−� )	(� ) d�. (29)

TABLE II

For Rectangle, Maximum Errors of Fourth-Order Code, 0 ≤ t ≤ 50

Boundary treatment h = 1/25 h = 1/50 h = 1/100

Exact Dirichlet 6.0 × 10−2 7.3 × 10−3 5.0 × 10−4

21-Pole NRBC 3.8 × 10−2 6.7 × 10−3 4.2 × 10−4
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Here, �(x) is a nonnegative function. Obviously, the layer equation reduces to the wave
equation when � = 0. The equation is then recast into differential form via the introduction
of auxiliary variables. The latter step may be accomplished in a number of distinct ways.
For the rectangle experiments we write

∂2u

∂t2
= c2

(
∇2u − ∂v

∂x
− w

)
, (30)

∂v

∂t
+ �(x)v = �(x)

∂u

∂x
, (31)

∂w

∂t
+ �(x)w = �(x)

∂2u

∂x2
− �(x)

∂v

∂x
. (32)

The layers have width d and thus comprise the intervals x ∈ (1, 1 + d) ∪ (−1 − d, −1). They
are terminated with the simple periodic boundary conditions; that is, the right boundary
1 + d is identified with the left boundary, −1 − d. We use a quartic absorption profile,

�(x) = �m

(
x − 1

d

)4

, x ∈ (1, 1 + d), (33)

analogously defined on the left.
To discretize the u equation we essentially follow the same strategy as in the interior.

We also obtain first-order derivative terms in time for u which we discretize one sided and
correct to higher order using spatial derivatives. The final formulas in time are given by

u(t + �t) − 2u(t) + u(t − �t)

�t2

= �u(t) − vx (t) − w(t) + �t2

12
�2u(t) + �t2

4
�(�(ux (t) − v(t)))x

− �t2

12
(�(vx (t) + w(t)) + �2w(t)) − �t3

12
�′(ux (t) − ux (t − �t))

− �t3

6
�(uxx (t) − uxx (t − �t)) − �t5

12
��uxx (t) − �t5

24
�′�ux (t)

+ �t5

12
�(vxxx (t) + wxx (t)) + �t5

24
�′(vxx (t) + wx (t)). (34)

For the auxiliary equations we make an exponential transformation,

v = e−�(t−tn )v̄, w = e−�(t−tn )w̄, (35)

at each time step. The equations for the barred variables are discretized directly using
Simpson’s rule. Note that this involves no additional implicit calculations, as we sequentially
update u, then v, then w. The final formulas are

v(t +�t) = e−2��tv(t −�t) + �t

3
(�ux (t +�t) + 4�e−��t ux (t) + �e−2��t ux (t −�t)), (36)

w(t +�t) = e−2��tw(t −�t) + �t

3
[�(uxx (t +�t) − vx (t + �t)) + 4�e−��t (uxx (t)−vx (t))

+ �e−2��t (uxx (t − �t) − vx (t − �t))]. (37)
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TABLE III

Maximum Errors for Rectangle as a Function of �m (d = 1)

�m 10 20 30 40 50

Max. err. 1.0 × 10−1 8.8 × 10−2 1.1 × 10−1 1.7 × 10−1 2.4 × 10−1

Recalling the continuity of the fields and their first four derivatives across the interface
and the periodic boundary conditions, we see that no special one-sided spatial derivative
formulas are needed. Therefore, we use a uniform mesh and central differences everywhere,
choosing their order to maintain overall fourth-order accuracy.

We present tests for three values of d, d = 0.5, 1, 1.5. In each case we tried a range of
values for �m between 10 and 50 in steps of 10. In Table III we illustrate the effect of
changing �m on the maximum error.

In Table IV we present some time history of the errors computed with h = 1/100, � = 0.5.
For the PML the results shown are for the best choice of �m tested. We also list the errors
obtained using exact Dirichlet conditions to assess the effect of discretization error. Note
that the times shown in the table are rather coarsely spaced so that maximum errors listed
earlier, which come from measurements on 500 time intervals, may be larger by factors of
up to 3.

We see that the computations using the compressed kernel are essentially as accurate as
those using the exact Dirichlet conditions. For the PML we require at least d = 1 to get any
accuracy for long time; that is, we need layers with at least 100 points.

TABLE IV

Errors for Various Boundary Treatments on Rectangle, h = 1/100

Time Exact 21-Pole d = 0.5 d = 1 d = 1.5

2.5 0.00008 0.00008 0.08144 0.00045 0.00009
5.0 0.00013 0.00012 0.11047 0.00527 0.00016
7.5 0.00020 0.00016 0.13866 0.00957 0.00034

10.0 0.00024 0.00020 0.13796 0.02189 0.00093
12.5 0.00027 0.00023 0.13483 0.02440 0.00205
15.0 0.00028 0.00025 0.13956 0.02569 0.00311
17.5 0.00029 0.00027 0.14883 0.02685 0.00446
20.0 0.00031 0.00029 0.15732 0.02789 0.00623
22.5 0.00032 0.00030 0.16681 0.02959 0.00817
25.0 0.00032 0.00032 0.17909 0.03106 0.01018
27.5 0.00032 0.00033 0.19395 0.03191 0.01222
30.0 0.00032 0.00034 0.21018 0.03235 0.01426
32.5 0.00031 0.00035 0.22822 0.03273 0.01627
35.0 0.00032 0.00036 0.24816 0.03335 0.01824
37.5 0.00030 0.00037 0.27018 0.03435 0.02018
40.0 0.00029 0.00038 0.29450 0.03566 0.02210
42.5 0.00030 0.00039 0.32054 0.03730 0.02402
45.0 0.00029 0.00040 0.34815 0.03933 0.02595
47.5 0.00028 0.00041 0.37754 0.04175 0.02791
50.0 0.00028 0.00041 0.40903 0.04453 0.02990
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5.2. Waveguide

We consider next the Cauchy problem in an infinite, two-dimensional waveguide, (x, y) ∈
(−∞, ∞) × (0, 1), with homogeneous Neumann boundary conditions imposed on the
walls:

u(x, y, 0) = u0(x, y), ut (x, y, 0) = v0(x, y), (38)

uy(x, y, t) = 0, y = 0, 1. (39)

We choose initial data supported in x ∈ (−2, 2) such that the exact solution can be evaluated
to high accuracy. Precisely, u(x, y, t) is also given by (27) with � = 30, � = −0.95, and
y0 = 1/3. The remaining yk , all outside [0, 1], are chosen so that the boundary condition is
satisfied. The first few are given by

y1 = 5/3, y−1 = −1/3, y2 = 7/3, y−2 = −5/3, (40)

with the general rule (k ≥ 0)

yk+1 = 2 − y−k, y−(k+1) = −yk . (41)

For reference we give in Fig. 4 contour plots of the solution at times 1, 2, 5, 10, 25, 50.
It should be noted that as time progresses waves are incident on the artificial boundary at
glancing angles, which is generally the most difficult case for low-order boundary conditions
and sponge layers to handle.

FIG. 4. Contours of the exact solution for the waveguide at various times.
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TABLE V

For Waveguide, Maximum Errors 0 ≤ t ≤ 50

Poles Modes h = 1/32 h = 1/64 h = 1/128

0 — 1.1 × 10−1 1.1 × 10−1 1.1 × 10−1

21 4 5.0 × 10−3 4.9 × 10−3 4.9 × 10−3

21 8 5.3 × 10−5 5.1 × 10−5 5.1 × 10−5

21 16 6.1 × 10−5 4.0 × 10−6 4.0 × 10−6

21 32 — 4.0 × 10−5 4.0 × 10−6

21 48 — 1.5 × 10−2 4.0 × 10−6

31 4 5.0 × 10−3 4.9 × 10−3 4.9 × 10−3

31 8 5.3 × 10−5 5.1 × 10−5 5.0 × 10−5

31 16 4.4 × 10−5 5.5 × 10−8 3.2 × 10−8

31 32 — 4.0 × 10−5 3.2 × 10−8

31 48 — 1.5 × 10−2 1.2 × 10−6

We consider two different collections of poles to approximate the plane kernel: a 21-pole
compression following from the parameters� = 10−4, � = 10−4, and a 31-pole compression
computed with� = 10−4, � = 10−6. Note that the exact solution is O(1), so that the absolute
errors (shown in Tables V–VII) are the same order of magnitude as the relative errors.

5.2.1. High-Order Results

We begin by demonstrating the accuracy attainable using the rational approximants of
the nonreflecting boundary kernels and an eighth-order-accurate discretization. We first
consider the maximum l2-error on the mesh for times up to 50 for various meshes and
numbers of modes used in the boundary condition. In Table V we compare the 21- and 31-
pole computations and, for reference, a computation using the simple Sommerfeld condition.
(The latter may be thought of as a 0-pole approximation.)

The data paint a clear picture. First of all, the Sommerfeld condition is quite inaccurate
over long time, independent of the mesh. Second, on fixing the mesh, the error at first
decreases as the number of modes in the boundary condition is increased, but then it
grows. The latter effect is due to errors in computing the Fourier integrals. The 31-pole
compression is clearly more accurate than the 21-pole compression and provides nearly the
maximal attainable accuracy with 16 modes on the finest mesh. For each of these, we are
able to attain more accuracy than guaranteed by the choice of �.

It is also of interest to look at the time dependence of the errors, shown in Table VI.
Here we consider our coarsest mesh, h = 1/32, and use 16 modes. In general, we observe
a growth of error in time for the uniform approximants, while the error for the Sommerfeld
condition peaks at t = 25 and remains at roughly the same level thereafter.

5.2.2. Comparisons with Other Methods

For purposes of comparison, we have also implemented a PML and the second-order
Engquist–Majda condition [10]:

utt ± uxt − 1

2
uyy = 0. (42)
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TABLE VI

Time History of Errors for Waveguide: h = 1/32, 16 modes

Time Sommerfeld 21-Pole 31-Pole

2.5 1.7 × 10−2 4.3 × 10−6 3.5 × 10−6

5.0 4.6 × 10−2 6.1 × 10−6 4.2 × 10−6

7.5 6.5 × 10−2 7.6 × 10−6 5.6 × 10−6

10.0 6.9 × 10−2 1.1 × 10−5 7.7 × 10−6

12.5 4.8 × 10−2 1.4 × 10−5 1.0 × 10−5

15.0 7.0 × 10−2 1.6 × 10−5 1.2 × 10−5

17.5 6.7 × 10−2 2.0 × 10−5 1.4 × 10−5

20.0 6.1 × 10−2 2.2 × 10−5 1.6 × 10−5

22.5 9.7 × 10−2 2.6 × 10−5 1.9 × 10−5

25.0 4.6 × 10−2 2.8 × 10−5 2.0 × 10−5

27.5 1.1 × 10−1 3.3 × 10−5 2.4 × 10−5

30.0 4.3 × 10−2 3.5 × 10−5 2.5 × 10−5

32.5 1.1 × 10−1 3.9 × 10−5 2.8 × 10−5

35.0 5.5 × 10−2 4.1 × 10−5 2.9 × 10−5

37.5 9.7 × 10−2 4.6 × 10−5 3.3 × 10−5

40.0 7.0 × 10−2 4.7 × 10−5 3.4 × 10−5

42.5 8.4 × 10−2 5.2 × 10−5 3.8 × 10−5

45.0 7.6 × 10−2 5.4 × 10−5 3.8 × 10−5

47.5 6.5 × 10−2 5.9 × 10−5 4.2 × 10−5

50.0 7.8 × 10−2 6.0 × 10−5 4.3 × 10−5

As these implementations are only second order, we repeat our computations with the 21-
pole compression using the second-order method. It should be noted that even on the finest
mesh we found it feasible to use routinely, 512 × 128, the long time accuracy using exact
Dirichlet boundary data is modest—a maximum error of 4.2 × 10−3. In Table VIII we
include the errors using exact Dirichlet boundary conditions for clarity.

For these experiments we used a slightly different set of auxiliary variables within the
PML. Precisely we set

vt + �v = ux , (43)

wt t + 2�wt + �2w = uxx − �′v. (44)

We then have

utt = uxx + uyy − 2�wt − �2w − �′v. (45)

Equation (45) is discretized by central differences analogous to our discretization of the
wave equation itself. Our discretization of the evolution equations for the auxiliary variables
w and v was derived by the same methods leading to (36) and (37) except that only second-
order accuracy was required. This results in the formulas

w(x, y, t + �t) = e−�(x)�t (2w(x, y, t) − �2h2�′(x)v(x, y, t)) − e−2�(x)�tw(x, y, t − �t)

+ �2e−�(x)�t [u(x + h, y, t) − 2u(x, y, t) + u(x − h, y, t)], (46)

v(x, y, t + �t) = e−2�(x)�tv(x, y, t − �t) + �e−�(x)�t [u(x + h, y, t) − u(x − h, y, t)].

(47)
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TABLE VII

Maximum Errors for Waveguide as a Function of �m (d = 1)

�m 4 6 8 10 12 15

Max. err. 5.8 × 10−2 4.3 × 10−2 4.3 × 10−2 5.2 × 10−2 6.8 × 10−2 1.0 × 10−1

A single layer was attached to the computational domain, with periodic boundary conditions
imposed. The absorption profile �(x) was chosen to vanish along with its first derivative at
the interface with the physical domain and to be continuously differentiable at the periodic
boundary. It is characterized by two parameters, the width d and maximum absorption �m ,
and is given by

� =



�m · (x−2)2

d2 · (2+2d−x)2

d2 , x ∈ (2, 2 + d);

�m · (2+x)2

d2 · (2+2d+x)2

d2 , x ∈ (−2 − d, −2).
(48)

We tested d = 0.75, 1, 1.5, 2, 3. In each case �m was roughly chosen to minimize the max-
imum error. For example, for d = 1 we obtained the maximum errors shown in Table VII.

In Table VIII we show the evolution for nine cases—exact Dirichlet data (to assess the
effects of discretization error), our 21-pole, 16-mode compression of the exact condition,
the PML for the five widths considered, and finally local radiation boundary conditions,
including the simple Sommerfeld condition and the second-order Engquist–Majda condition
(42), labeled EM1 and EM2.

TABLE VIII

Errors for Various Boundary Treatments for Waveguide, Second Order, h = 1/128

Time Exact 21-Pole d = 0.75 d = 1 d = 1.5 d = 2 d = 3 EM1 EM2

2.5 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0151 0.0038
5.0 0.0008 0.0007 0.0020 0.0016 0.0008 0.0007 0.0007 0.0438 0.0135
7.5 0.0009 0.0008 0.0043 0.0038 0.0009 0.0008 0.0008 0.0630 0.0289

10.0 0.0014 0.0012 0.0081 0.0070 0.0012 0.0012 0.0012 0.0653 0.0333
12.5 0.0011 0.0010 0.0113 0.0084 0.0010 0.0010 0.0010 0.0457 0.0322
15.0 0.0019 0.0016 0.0130 0.0101 0.0016 0.0015 0.0015 0.0664 0.0367
17.5 0.0016 0.0011 0.0152 0.0122 0.0016 0.0012 0.0011 0.0637 0.0465
20.0 0.0023 0.0019 0.0222 0.0189 0.0027 0.0019 0.0018 0.0587 0.0320
22.5 0.0016 0.0013 0.0222 0.0152 0.0032 0.0015 0.0013 0.0936 0.0642
25.0 0.0026 0.0021 0.0258 0.0223 0.0044 0.0024 0.0021 0.0435 0.0266
27.5 0.0027 0.0014 0.0274 0.0205 0.0056 0.0022 0.0014 0.1026 0.0684
30.0 0.0028 0.0024 0.0311 0.0247 0.0067 0.0031 0.0023 0.0402 0.0293
32.5 0.0024 0.0016 0.0371 0.0234 0.0086 0.0033 0.0016 0.1029 0.0681
35.0 0.0031 0.0026 0.0346 0.0271 0.0094 0.0041 0.0026 0.0496 0.0340
37.5 0.0026 0.0017 0.0473 0.0297 0.0120 0.0047 0.0018 0.0936 0.0648
40.0 0.0031 0.0028 0.0408 0.0268 0.0129 0.0052 0.0030 0.0632 0.0389
42.5 0.0029 0.0019 0.0560 0.0366 0.0158 0.0065 0.0020 0.0799 0.0595
45.0 0.0032 0.0030 0.0496 0.0272 0.0170 0.0063 0.0034 0.0689 0.0417
47.5 0.0033 0.0020 0.0648 0.0414 0.0202 0.0084 0.0025 0.0616 0.0527
50.0 0.0032 0.0032 0.0600 0.0296 0.0214 0.0079 0.0038 0.0708 0.0431



WAVE PROPAGATION IN UNBOUNDED DOMAINS 291

TABLE IX

Parameters for the Waveguide Timing Tests

Case Time Tolerance Spatial mesh PML width (each side)

1 25 0.01 200 × 50 2.6
2 50 0.01 260 × 65 3.69
3 10 0.001 560 × 140 1.5
4 25 0.001 760 × 190 3.0
5 50 0.001 880 × 220 5.11

We see that both our 21-pole compression and the PML with d = 3 provide results as
accurate as those obtained with exact Dirichlet data. That is, the errors associated with these
domain truncations are dominated by the discretization error. However, it should be noted
that the storage and computation costs associated with our compressed exact boundary
condition are much smaller than those associated with a width 3 PML. We require 21 × 16
auxiliary variables at each boundary and an additional 256 variables used for the FFT. On
the other hand, the PML uses 384 × 128 × 3 variables in the layer—more than 200 times as
many. For shorter time intervals and less stringent accuracy requirements this can certainly
be decreased. For example, for t ≤ 10 and an error tolerance of 10−2, d = 0.75 suffices, but
this is still significantly more costly than the nonreflecting boundary condition. We should
also recall that our boundary condition is capable of providing errors smaller by orders of
magnitude if high-order discretizations are used. The low-order local boundary conditions
provide modest accuracy at best, with errors larger than 10−2 by t = 5.

5.2.3. Timing Results

To demonstrate the practical efficiency of the proposed boundary conditions in compar-
ison with the PML for moderate accuracy requirements we conducted timing experiments
with the waveguide problem (Tables IX and X). We considered solution times of t = 10,
25, 50 and error tolerances of 10−2 and 10−3 . In all cases we used standard second-order
central differencing with a CFL number of 1/2. We first carried out experiments using exact
Dirichlet boundary conditions to determine the coarsest mesh for which the tolerances could
be met. Our approximate boundary conditions used nine Fourier modes and the 21-pole
approximation. Nine modes were more than sufficient in all cases to meet the accuracy
requirements. Using so few modes and given the fact that the meshes were not chosen to
optimize the efficiency of the FFT, we simply computed the transforms by direct integration
and series summation. For the PML we experimentally minimized the layer width required,
considering a number of different values for the absorption parameter. For the layer we
implemented we are confident that we are within 5% of the minimum width.

TABLE X

Time in Seconds for the Waveguide Timing Tests with Various Boundary Treatments

Domain truncation Case 1 Case 2 Case 3 Case 4 Case 5

Dirichlet 2 12 107 1010 3545
9-Mode, 21-pole BC 4 17 127 1013 3640
PML 31 334 427 7121 37314
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The experiments were conducted on a computer with dual 400-MHz processors and
2 GB of memory. The Fortan 77 compiler was used with optimization enabled. For the
short runs, the output of the time command was repeatable to within 1 s, and for the longer
runs to within 5%. (In cases where multiple runs were made we report the first result.) In
the final timing runs we suppressed all calls to the routines evaluating the exact solution,
as they are quite expensive. For t = 10 and a tolerance of 10−2 all runs required less than
1 s, so that no comparison could be made. The results in the other five cases are tabulated
below.

We begin with the obvious conclusion that the proposed boundary conditions are vastly
more efficient than the PML in these experiments. Of course, a multitude of PML formula-
tions have been proposed and others may be cheaper than the one we have used. However,
it is clear that the new boundary conditions are insignificantly more expensive than simple
Dirichlet conditions and provide excellent accuracy. Moreover, the necessary width for the
PML is strongly dependent on time, as predicted for waveguide problems in [23]. We thus
feel it is unlikely that any PML approach will be competitive with the proposed boundary
conditions for any problem of this type. In addition we note that the advantage in using the
nonreflecting boundary conditions is more pronounced for tighter error tolerances, and that
we have neglected the significant efforts required to optimize the PML.

5.3. Annulus

We consider next the propagation of a pulse through an annular domain (r, �) ∈ (0.8, 1) ×
[0, 2�), with Dirichlet boundary condition at r = 0.8 and nonreflecting boundary at
r = 1. The field arises from a single point source at (r, �) = (0.7, 0) with excitation
f (t) = e−�(t−� )2

, with � = 150 and � = 0.1. The exact solution is computed as above
for the rectangle or waveguide, except that a single source is present.

We compute the numerical solution with a second-order- and a fourth-order-accurate
code, and rational approximations to the nonreflecting boundary kernels that are accurate
to � = 10−8. (The number of poles required is shown in Table I.) The discretizations are
similar to those above for the rectangle, except that here we employ radial grids in place of
Cartesian. In Table XI we show the global relative l2-error on the annulus at various times for
the two codes with three different discretization refinements. For this problem, we integrate
only to time t = 3, for the impulse has largely left the domain by that time.

TABLE XI

Errors for Annulus with Nonreflecting Boundary, Second- and Fourth-Order Codes

�r = 1/40 �r = 1/80 �r = 1/160
�� = �/50 �� = �/100 �� = �/200
�t = 1/50 �t = 1/100 �t = 1/200

Time 2nd 4th 2nd 4th 2nd 4th

0.5 3.6 × 10−2 2.3 × 10−2 8.5 × 10−3 1.1 × 10−3 2.1 × 10−3 6.7 × 10−5

1.0 3.8 × 10−2 1.8 × 10−2 9.9 × 10−3 1.1 × 10−3 2.5 × 10−3 7.4 × 10−5

1.5 1.3 × 10−2 1.3 × 10−2 2.5 × 10−3 3.0 × 10−4 5.7 × 10−4 2.0 × 10−5

2.0 9.8 × 10−3 3.6 × 10−2 1.6 × 10−3 9.7 × 10−4 3.4 × 10−4 4.2 × 10−5

2.5 2.5 × 10−3 1.7 × 10−2 2.7 × 10−5 2.9 × 10−5 3.0 × 10−6 2.3 × 10−7

3.0 2.0 × 10−3 1.6 × 10−2 8.1 × 10−6 1.1 × 10−6 3.3 × 10−7 8.8 × 10−8
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TABLE XII

Parameter Values of the Sources for the Field on the Sphere

pk

k �k �k xk yk zk

1 100 0.5 0.5 0.8 0.0
2 100 0.6 0.0 0.5 0.8
3 100 0.7 0.8 0.0 0.5
4 100 0.8 0.8 0.5 0.0
5 100 0.9 0.0 0.8 0.5
6 100 1.0 0.5 0.0 0.8

5.4. Sphere

Our final numerical example is for a spherical boundary. The field is due to six Gaussian-
excited point sources inside the sphere r = 1,

u(x, t) =
6∑

k=1

e−�k (t−�k−rk )2

rk
, (49)

where rk = ‖x − pk‖. The values of �k , �k , and pk are given in Table XII.
Rather than integrate the fully three-dimensional problem, we defer the volume gridding

issue by computing the time-dependent Dirichlet-to-Neumann map on the sphere itself.
More precisely, we compute the radial derivative ur from (12), where each wavenumber
of the field at each time is obtained by a spherical–harmonic transformation applied to the
exact field on an equiangular grid in spherical coordinates �, 	. The time derivative of
the field is obtained by finite differences, and the convolution integral is discretized by a
quadrature, with equispaced times.

The convolution kernels are approximated to accuracy � = 10−8, using the number of
poles shown in Table I. We compute the time derivatives and convolution integrals to second-,
fourth-, and eighth-order accuracy. Our spatial discretizations correspond to spherical–
harmonic expansion triangular truncations of various orders N that are common in weather
and climate simulators and use a reference spherical–harmonics transform implementa-
tion [19]. We let �t = 1/N . We compare the computed radial derivative to the exact
value and observe errors shown in Table XIII. Since the sources are positioned at radius

TABLE XIII

Maximum Global Relative Errors for Sphere, 0 ≤ t ≤ 3, for Second-,

Fourth-, and Eighth-Order-Accurate Codes

N ��, �	 2nd 4th 8th

42 �/64 1.8 × 10+0 1.6 × 10+0 1.6 × 10+0

63 �/96 6.5 × 10−1 5.4 × 10−1 5.4 × 10−1

106 �/160 1.6 × 10−1 5.6 × 10−2 5.6 × 10−2

170 �/256 6.1 × 10−2 1.8 × 10−3 1.6 × 10−3

213 �/320 3.9 × 10−2 4.1 × 10−4 1.5 × 10−4

266 �/400 2.5 × 10−2 1.6 × 10−4 1.3 × 10−5
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r = √
0.52 + 0.82 ≈ 0.94, near the sphere r = 1 of interest, coarse spatial discretizations do

not resolve the field. This effect is apparent in the fairly low accuracies, for small N , of all
three temporal orders of discretization. As N increases, however, the spectral convergence
of the spatial discretization yields very small spatial errors; the errors due to the second-,
fourth-, and eighth-order-accurate temporal discretizations dominate.

6. CONCLUDING DISCUSSION

A new technique for efficiently applying the exact nonreflecting boundary conditions for
the scalar wave equation was described and numerically tested in several boundary configu-
rations. The technique is based on the observation that the nonreflecting boundary kernels for
a planar, cylindrical, or spherical artificial boundary can be accurately approximated by com-
pressed rational representations in the Laplace domain. A proof of the compression for the
plane kernels was presented here; the cylinder and sphere kernels are treated elsewhere [3].

Our primary emphasis here was the demonstration of the performance of the boundary
conditions in model wave-propagation problems, where comparisons to exact solutions and
other boundary treatments were possible. In each case, for planar, circular, and spherical
boundaries, in two and three dimensions, the accuracy obtained was consistent with es-
sentially exact boundary conditions: the dominant source of error was spatial or temporal
discretization error, and the error due to the boundary conditions was limited by the accuracy
to which the boundary kernels were approximated.

The technique appears particularly advantageous when long time integrations are re-
quired, for the error that often accumulates with other boundary treatments is absent here.
A particularly difficult example is the rectangle with periodic boundary conditions in one
direction, for which a PML treatment is not very effective, but which is adequately handled
by the new technique.

A primary limitation of the technique is that the propagation medium must be uniform
at the boundary (any inhomogeneities must be confined). The technique does not suggest a
way to treat propagation in infinite-layered media.

A secondary limitation is that the technique offers few choices for the shape of the arti-
ficial (nonreflecting) boundary. In particular, a general rectangular domain is not allowed.
While this restriction need not ultimately limit which physical problems can be solved,
it introduces some inconvenience in constructing modeling software, in addition to ineffi-
ciency for (otherwise) elongated domains. A melding of a Cartesian mesh with a circular
or spherical boundary remains to be demonstrated.

The implementation of the boundary conditions for Maxwell’s equations (following
their formulation [20]), accurate discretization for scatterers with complicated shapes, the
associated clustering of points (or small cells), and corresponding stability issues [4] remain
problems for future research.
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